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saturation. The evaluation of this waveguide for such

applications would in turn require determination of the

equivalent circuit of the ridge–gap mounting structure.

That would be the topic of a future communication.
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Asymmetric Realizations for Dual-Mode
Bandpass Filters

RICHARD J. CAMERON AND JOHN DAVID RHODES, SENfOR MEMBER, IEEE

Abstracr-Two analytic synthesis techniques are presented for even-

qmmetric dual-mwle in-ffne prototype networks up to degree 14.
Commencing with the coupffng matrix for the double CroScQ@ed array,
retatfonaf transformations are appfied to transform the matrk fnto the

form requked for the dual-mode in-fine asymmetric structure. 66Asymmet-
I’ie” here means that the eoupffng elements (* screws) are unequal fn

value about the physicaf center of the fffter. ‘Ike necessity for these

~c am _ *n it was discovered that it was impossible to

~ on accountof thefr tmmmksion zero pattern in the cmnplex-
pbme representation of the transfer function. F~ kamw the
fullcoupiin grnatrixfs~-dof~ even-mede rnatrka,qwithtfre

~c ~~o~ * ~tric in-line reafktion proceRs may be
appfied to electrically mymmtric matrf~ such as those for singbended
fflters for multiplexer applications. To demonstrate the vafidity of the

S’Y~Cd model of ~CfI type of reaffzatfon has been constmckd

I. INTRODU~ION

T HE PROBLEM of converting the mathematical de-

scribing polynomials of the characteristics of a low-

pass prototype filter network into a symmetric in-line

dual-mode structure was first addressed by Atia and Wil-

liams [1]. Firstly an even-mode coupling matrix was

synthesized, and then by iteratively rotating this matrix
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certain prescribed couplings were annihilated. The result-

ing matrix, when unfolded into the full coupling matrix,

contains only those couplings that could be realized by a

symmetric in-line dual mode structure, while retaining the

original 2-port electrical parameters. More recently, the

procedure of annihilating the couplings by iteration and

optimization has been replaced by analytic techniques for

even filter orders 6– 12 inclusive [2]. These analytic tech-

niques use as their base, the folded coupling matrix for the

generalized low-pass cross-coupled network, the synthesis

of which is described in [3]. Using these new procedures,

the full coupling matrices for symmetric in-line dual-mode

filters are easily and quickly generated from the describ-

ing polynomials.

The symmetric realizations ho-wever have restrictions.

Firstly, the methods cannot be used for electrically asym-

metric characteristics, such as those for multiplexer appli-

cations. Secondly, there does not appear to be a solution
for 14th order characteristics, which occasionally do have

application. Thirdly, for lower degree cases, certain char-

acteristics which have particular patterns of transmission

zeros as represented in the Argand diagram are unrealiz-

able with a symmetric structure. A complete set of realiza-

bility conditions is given in [2].

It was these reasons that prompted a study to be made

into solutions other than ~with symmetric structures. In

fact two general types of asymmetric solution were dis-

covered. The first is a general asymmetric solution which
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is valid for realization of any network transfer function,

including those characteristics which lie in the areas men-

tioned above and which cannot be realized with the

symmetric structure. The second type is known as the

cascade-quadruplet (CQ) in-line solution, which has dif -

ferent restrictions to the symmetric solution. The general

realizability condition in this case is that the transfer

function cannot have complex transmission zeros. For

both types of realization, a description of the analytic

methods leading to the in-line realization is presented, for

even orders 6– 14 inclusive for the general solution, and

for even orders 6– 10 inclusive for the CQ solution. A

laboratory model of each type has been constructed and

the measured performance of each is given.

II. GENERAL PRINCIPLES

As with the symmetric solution, both the solutions

described here use as their base the generalized low-pass

cross-coupled network (Fig. 1(a)). The synthesis procedure

for this network is given in [3]. The network is a folded

ladder network of admittance inverters Ki and shunt

capacitors Ci, cross coupled by further inverters K;. Fig.

l(b) shows the corresponding coupling and routing dia-

gram for this network, where the capacitors are depicted

as nodes intercoupled by forward and cross couplings it4ij.

Fig. l(c) gives the coupling matrix for the generalized

cross-coupled network together with the formulas used to

generate the elements of the matrix from the elements of

the network. The procedure is equivalent to scaling the

internal capacitors of the network to the normalized value

of unity.

Relating the diagram of Fig. l(b) to the coupling matrix

of Fig. 1(c) it is clear that the main couplings are those

running parallel to the principle diagonal, i.e.,

M12, M23, M3q, etc. The weaker cross couplings are those

on the antidiagonal, Ml ~, M2T, h436 in this case. There are

three cross couplings in this example, but when convertim g

this folded configuration coupling matrix to that for an

in-line configuration, one must be mindful of the fact that

the folded configuration realizes the maximum number of

couplings for a given order, and therefore the maximum

number of finite location transmission zeros. The in-line

configuration is able to reahze less finite zeros, aCCOrdirlg

to the rule

maximum number of
realizable finite

1

m = iV/2

zeros with in-line
:::;) (1)

m=(N/2–1)
realization

where n = N/2 and N is the order of the filter. Before

committing a transfer function to the in-line realization u

process it should always be tested to ensure that the

number of finite zeros required to realize it does net

exceed m. A N X N rotation matrix R is defined as in Fig.

2. Pivot [i, j] means that Rii =Rjj = cos 0,, and Rji ❑ =

– Ri, = sin 0, (i, j# 1 or N). If a coupling matrix M is
premultiplied by R and the result postmultiplied by R’r

(a)
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for cross couphngs

], =1-.-1

(c)

Fig. 1. (a) Generalized low-pass cross-coupled network. (b) Coupling
and routing schematic (8th order example). (c) Coupling matrix for
low-pass prototype (8th order example).

1234567s

Fig. 2.

c, = Cos 0,
s, = w 9,

8x 8 rotation matrix example, pivot (2,6), angle 0,.

(the transpose of R) a new matrix will result which has the

same eigenvalues and eigenvectors as the original ill

M,= R,” M,.l.R: (T=1,2,3,... ), (2)

An infinite number of networks therefore exist which, if

all the couplings within the resultant coupling matrix are
realized, will produce the same transfer function as the

original.
The essence of the general in-line realization method to

be described below is to apply a series of rotations accord-

ing to (2), where the angle of rotation f?,of the r th rotation

is derived from elements of the coupling matrix resultant

from the (r – l)th rotation. The first rotation is applied to

the generalized cross-coupled array matrix MO (Fig. l(c)

and after the final rotation the goal is to achieve the
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Fig. 3. (a) In-fine dual-mode structure, 8t13order example. (b) In-line
structure coupling matrix. (c) Coupfing and signal routing schematic.

coupling qatrix which may be realized by an asymmetric

in-line dual mode structure (Fig. 3).

III. GBNERAL ASYMMETRIC SOLUTION

Unfortunately there does not seem to be any pattern

governing the pivotal positions or angle of rotation for

different orders of filter. Each (even) order has to be

considered individually. For N= 4 the cross coupled array

matrix and dual mode in line prototype are of the same

structural form and further transformation is not neces-

sary. N= 6 is the first nontrivial case, and solutions for

N= 6, 8, 10, 12, and 14 have been derived. Table I gives a

summary of the pivotal positions and angles Orof the series

of rotations that have to be applied in order according to

(2). It should be noted that when calculating the angle of

rotation 0, for the r th rotation, the elements Mtil, ~z and

%1, OZare taken from the coupling matrix resultant from
the previous rotation, and that the rotation is then applied

to this resultant matrix.

There are no conditions on the pattern of the zeros of

the transfer functions for an in-line solution awing this

methot provided the total number of finite-location zeros

z < m as pre~ously described.

If the rotations of Table I are successively applied to

the cross-coupled array matrix, a coupling matrix will

emerge that is realizable in an in-line dual mode structure

with asymmetric-valued coupling elements. A point of

interest here is that for n odd, one of the internal irises

next to the input or output coupling iris will be a slot,

unlike the rest which will be cruciform. A 14th order

linear phase filter has been designed and constructed

using these techniques, and a description and measured

TABLE I
PIVOTALPOSITTONSANDROTATIONANGLRSFORGSNRRAL

Asmmrrnuc lN-LINS REALIZATIONS.ORDERS6 (2) 14

4+
1 [4, 6]

8
2 [2, 4]
3 [3, 5]
4 [5, 7]

1
10

[4, 6]
2 [6, 8]
3 [7, 9]

+

12

14

1

2
3
4
5
6
7

[5, 9]
[3, 5]
[2, 4]
[6, 8]
[7, 9]

[8. 10]
[9, 11]

1
2
3
4
5
6
7
8
9

10

yi :]

[i 9]
[8. 10]
[9, 11]

[:;]

[i 9]
[9, 11]

[11, 13]
1

O,=tan-l(k 14ti
UI .2

2

3
2
2
4

4
3
6

4
3
2
3
6
5
8

-
5
4
4
7
6
9
4
6
s

10
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6
7
5
7

7
8
9

9
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5
8
9

10
11

10
11
9

10
11
12
7
9

11
13

VI

4

3
4
2
4

6
3
6

4
5
4
3
6
5
8

5
6
4
7
6
9
4
6
8

10

,/JJ”,

5

4
7
3-
5

7
6
7

5
10
5
6
‘1
8
9

6
11
7
8
9

10
5
7
9

11

I
k

+1

-1
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Fig. 4. (a) l(lth order example of a CQ dual-mode structure. (b)
Coupling matrix for 10th order CQ example. (c) Coupfing and routing
diagram. \,

curves of its performance will be found towards the end of

this paper. ?

IV. CASCADE QUADRUPLET REALIZATION

A CQ construction is similar to the general asymmetric

structure described above, but the internal irises are alter-

nately cruciform and slot along the length of the filter

(Fig. 4(a)). From the coupling and routing diagram of Fig.
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Fig. 5. Appearance of the coupling matrix during the first three rota-
tions. X Notuero coupling matrix entry. @ Coupfing matrix entries
that have been created as a consequence of a rotation. C) Coupling
matrix entries that have been annihilated as a consequence of a
rotation.

TABLE II
ROTATIONSFORms 8m ORDERCQ SOLUTION

L
1
2
3
4

4(c) it may be seen that the nodes are arranged in

quadruplets, each with one cross coupling, and connected

in cascade with each other through one main-line cou-

pling. For n odd an extra pair of nodes is attached at the

end. Each quartet may be identified with the production

of a transmission zero pair. If the cross coupling is nega-

tive an imaginary axis pair will be created, there produc-

ing an attenuation pole pair, and if it is positive a real-axis

pole pair will result with group delay self-equalization.

The value ot this CQ structure is not so much that it

saves on coupling irises, but that it is able to realize those

characteristics that violate the conditions of realization for

the symmetric structure, on account of their transmission

zero pattern. It has provided an elegant solution to the

very useful 8th order characteristic which has one real axis

and one imaginary axis transmission zero pair, which

violates the conditions of realizability for the symmetric

structure.

The base is again the coupling matrix for the gener-

alized cross-coupled network, Fig. 1(c). The solution for

the 6th order case is the same as that for the general

in-line solution. That this is so becomes clear when the

coupling and routing diagram is drawn for the 6th order

case and remembering that for n odd the general in-line

solution produces one zero-value internal cross coupling.

The first order that will be considered for the CQ solution

will therefore be the 8th.

A. 8th Order CQ Solution

Rotations are applied to coupling matrices in exactly

the same manner as described for the general asymmetric

solution. The difference here is that the first rotation is by

an unknown angle 91. Two further rotations are then

made in accordance with Table II.

Fig. 5 shows the nonzero entries in the coupling matrix

after each of the first three rotations. Each entry is indi-

cated with a cross for convenience, but the actual value of

each element will probably change after each rotation.

Adopting the notations tlF tanO1, C3G cos 03, etc., and

M:’ - matrix element after first rotation, Mjj’ after third

rotation, etc., the following equation sets appear (matrix

elements after a rotation expressed in terms of those

before the rotation):

1) After First Rotation:

~z = M12

MJ~ = c1M2B

Mid = C1M34 –S1M45

M& =slM~d +c1Mq5

M:e =slM~c +C1M56

M;, = Mby

M~S = M 7s

M~6 = c1M~6 –s1M5b

M&= S1MZ3

M~T = M 27-

2) After Second Rotation:
M,, _

12 — M;2

Mj!! c M’
23

M;= czM~b – S2 M&

M;5 = CzM& – S2M&

M~=sz M&+cz M’ 56

M;= C2M:7

M:s = M~g

M~5 = M~5
M,, _

27 — M;7

&&7 c — S2M;,

M;= s2M~b + C2M~6 = O because t2= – M~6 /M~4.

(3)

(4)
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(5)

3) After Third Rotation:

M;; = iw;~

Mg, = iW;3

M; = M;

MIJ f! —~3~:7= C3M45

M&’ = C3M& —S3M;T
Ml&l = S3M& + C3M$
M% = c3M:~
M&? = —s3MJg

ME= C3M~5 —S3M~7
Ml,,~~ = S3M~5 i- C3M:7

M; =S3M;5 + c3M&

To force M& and M&’ in (5) simultaneously to zero, t3is

set equal to – M& /M~5. Then

M~5 M:, = M~5 M;,

and substituting from (4)

M& M~7
=

CzM& —s2M~6 —SzM:T

or

(6)

Substituting for M/j in (6) using (3) yields, after a good

deal of algebraic manipulation, a quadratic equation for t,

in terms of the elements of Mo, the original cross-coupled

network matrix.

One further rotation is necessary, defined in Table II, in

order to annihilate M;! (Fig. 5(c)), after which the CQ

matrix of Fig. 6(a) appears. Fig. 6(b) gives the routing and

coupling diagram for the 8th order CQ structure, and the

explicit formulas (7) give the four rotation angles and the

elements of the final CQ coupling matrix, all in terms of

the coupling elements of the original cross-coupled net-

work matrix MO

M;: = C4 M,z M~~=c1c4[M23 – :(M34 –f1M45)l

M;; = C3M7s Mj~=c1c4[t4M23 + ;(M34 –tlM45)l

M:;=C2+(M56+tzfk)+%] (7)

where t,is the solution of the quadratic equation

t:( ikf27kf45fkf~4 – bff3&t67M23 + M36”56M27)

+ t1(M23kf67M36 – M27( M& – M~6 – M~5 + Mf4))

– kf~7(kf5&36 + ikf34M45) = o

1

2

3

4

5

6

7

8

12345678 -

I 1 , 1 1 1 1 1 I

(a)

2t----’+ ‘--j
M;: Mfl

AM,,I MLLL!K..LfOo
@)

Fig. 6. (a) 8th order CQ coupling matrix. (b) 8th order CQ routing and
coupling diagram.

TABLE III
10TH ORDER PRBUhnNARY ROTATIONS

Rotat!on no Pivot O,=tan-’ (+ A4., mJM,,,J

, [1.11 UI U2 UI U2

I [3, 7] 3 8 7 8
2 [4, 6] 4 7 6 7

It is the quadratic equation for tan 81 in (7) that sets the

realizability conditions for this CQ in-line realization. As

was mentioned previously these conditions appear to be

different from those for the symmetric in-line structure,

and it became possible to construct a laboratory model

using the CQ procedure possessing both a real-axis and an
imaginary axis zero-pair. The measured performance

curves of this filter are given below.

B. 10th Order CQ Solution

Fortunately the solution for the 10th order CQ structure

uses the same formulas as the 8th order, and a rederiva-

tion is not necessary. It is necessary however to first shift

the elements of the antidiagonal towards the upper left

corner by one (Fig. 7). This is achieved by two pre-

liminary rotations, defined in Table III. Now the formulas

(7) may be applied to the upper left 8X 8 submatrix, after

which a CQ coupling matrix for the 10th order will appear

(see Fig. 4).

V. PRACTICAL MODELS

A. 14th Order Linear Phase Filter

The European Communication Satellite (ECS) repeater

is a double conversion type, the receiver is at 14 GHz, the

IF at about 1 GHz and the power amplifier is at about

11.5 GHz. Demultiplexion of the 6 QPSK 60-MBd uplink

channels is achieved at IF by 14th order linear phase

filters of interdigital construction. Modern FET technol-
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Fig. 8. 14tb order linear phase filter general asymmetric in-line realiza-
tion.
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TABLE IV
14TH ORDBRLINZAR PHASE LOW-PASS PROTOTYPE VALUSS

Cross-coupled network prototype General asymmetric realisation

element values prototype co.pli”g values

C, = CL. = 0.9239 K;,,. = 0.0 64,, = 0.8581 M,, = 0.4064 M,, = 0.0
C, = C,, = 1.4698 K~,,(, = 0.0 M – 05961 M,,,e = 0.4408 M,e = 0.1090
c, = C,* = 1.9147 ,,,, = 0.0 M:: ~ 0.5384 M,a,,, = -0.7332 M,, = O.1O4I
c. = c,, = 1.7309 K.,, = 0.0397 M., = 0.4306 M,, ,, = 0.3029 M. ,0 = 0.1309
C, = Ct. = 2.0305 K;,,. = 0.2257 M,e = 0.4883 M,l ,, = 0.2460 M,,, = 0,1850
C, = C, = 1,8850 K;,, = 0.3922 M., = –0.6315 M,, ,4 = 0.6699 M,,,. = 05363
C, = C, = 3.2919 K,,, = 0.6111 M,, =, 0,4769
All K inverters = 1.0 except K,.

., TABLE V
8m3 ORDBR SELF-EQUAIJZBD PSBUDOBLLIFTIC Low-PAss

PROTOTYPE VALUES

Cross coupled network ekmems CQ reahsed couplins elements

C, = C, = 0.8248 K ~, = 0.0 M ,, = 0.8904 .M, e = 0,4621
c, = c, = L431O K,, = –0,0854 M,, = 04728 ,Me. = 0.8437
C, = C. = 1.8302 K,, = –00833 M ,. = 05782 t{.” = 0.8368
Cd = C, = 1.7643 K., = 11344 M., = 0.5648 M,. = 0.2335

.M,, = –0.3835
K,, = K,, = K,t = K,$ = K,, = K,, = 1.0

ogy has made practical the concept of a single conversion

repeater with the IF at the downlink frequency of 11.5

GHz and consequent savings in complexity and weight.

Thus the demultiplexion function has to be performed at

11.5 GHz instead of 1 GHz and the interdigital technol-

ogy becomes unsuitable.

To investigate the performance of the single conversion

repeater system, a laboratory model has been built and for

that a 14th order linear phase dual mode filter constructed

using the general asymmetric in-line procedure described

above. The prototype is an equiripple amplitude type with

group delay equalization over about 75 percent of the

design bandwidth of 77 MHz. This is achieved with 6

finite transmission zeros (the maximum permissible, from

(I)), arranged in a complex quartet and a real-axis pair,

Center frequency is 11 575 MHz, channel 5. The proto-

type generalized low-pass cross-coupled network element

values (see Fig. 1) and prototype asymmetric in-line real-

ized coupling values for this filter are given in Table IV.

Having synthesized the generalized cross-coupled array

and then applying the rotations given for the 14th order in

Table I, the dual mode filter shown in Fig. 8 was manu-

factured. The performance is shown in Fig. 9 (amplitude),

Fig. 10 (group delay), and Fig. 11 (wide-band sweep to

search for spurious responses, particularly in the receive

band 14-14.5 GHz). Band center loss is about 3.5 dB

corresponding to a Q. of about 4500, which is somewhat

low, but should improve with cavity polishing and plating.

Comparing the responses with those for the 1-GHz flight

models, the performance seems to be everywhere equiva-

lent except for a slight “rounding of the shoulders” near

cutoff, which should be rectified by improving the un-

loaded Q of the cavities.

B. 8th Order Cascade Quadmplet Filter

Future satellite communication systems are likely to

move away from crowded L-, C-, and X-band frequencies

to the more spacious 20– 30-GHz regions as technology

57

Fig. 12. 8th order self-equalized pseudoelliptic filter, CQ reahzation.

progresses. A breadboard laboratory model has been as-

sembled at ESTEC designed for an uplink frequency of

about 30 GHz, a downlink of about 20 GHz, an IF of
11.550 GHz and to carry a single QPSK channel at 30, 60,

or 90 MBd [4]. To investigate the degradation introduced

by this channel as if it were in a multichannel environ-

ment, an 8th order CQ dual mode input multiplexer filter

was manufactured using the CQ realization procedures

described above, to contiguous PSK channel specifica-

tions. The prototype is an equiripple amplitude type with

a single imaginary-axis transmission-zero pair to provide

an attenuation pole pair, and a real-axis zero pair for

group delay equalization over about 60 percent of the

filter’s 120-MHz bandwidth. Center frequency is 11550

MHz.

The initial generalized low-pass cross-coupled network

element values (see Fig. 1) and the final CQ realized

coupling values for this filter are given in Table V. The

laboratory model is shown in Fig. 12 and the performance
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Fig. 13. Attenuation characteristic.
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Fig, 14, Group delay response.

is given in Fig. 13 (amplitude), Fig. 14 (group delay), and

Fig. 15 (wide-band sweep to search for spurious re-

sponses). The BER of the system was measured where it

was found that the filter was contributing about 0.2 dB of

degradation to the total (see also [5] for a description of a

40-MHz bandwidth version of this filter).

VI. CONCLUSIONS

Presented in this paper are two methods for realizing

prototype filter characteristics in asymmetric dual mode

in-line structures. Together with the symmetric-structure

procedure outlined in [2] they provide a comprehensive

solution in the area of microwave filter realization. The

two procedures are both easily programmed onto a digital

computer, and exact answers are produced at the expense

of negligible amounts of computer time. Using such pro-

grams two dual mode bandpass filters have been con-
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Fig. 15. Wide-band sweep 10– 15 GHz.

strutted, one in the general asymmetric in-line structure

and the other in the CQ structure. Their performance

curves have been presented to demonstrate their practical-

ity.
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