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saturation. The evaluation of this waveguide for such
applications would in turn require determination of the
equivalent circuit of the ridge—gap mounting structure.
That would be the topic of a future communication.

ACKNOWLEDGMENT

The authors are indebted to Prof. B. R. Nag for his
helpful suggestions and critical appraisal of the
manuscript. Thanks are also due to the Computer Centre,
University of Calcutta, for providing the computing facili-
ties.

REFERENCES

[1] 8. B. Cohn, “Properties of Ridge Wave Guide,” Proc. IRE, vol. 35,
pp- 783-788, Aug. 1947.

[2] S. Hopfer, “The design of Ridged Waveguides,” IRE Trans. Micro-
wave Theory Tech., vol. MTT-3, pp. 2029, Oct. 1955.

[3]1 W.J. Getsinger, “Ridge Waveguide Field Description and Applica-
tions to Directional Couplers”, IRE Trans. Microwave Theory Tech.,
vol. MTT-10, pp. 41-50, Jan. 1962.

[4] E. V. Jull, W. J. Bleackley, and M. M. Steen, “The Design of
Waveguides with Symmetrically Placed Double Ridges,” IEEE
Trans. Microwave Theory Tech., vol. MTT-17, pp. 397-399, July
1969.

[5] S.Mizushina and T. Ohsuka, “The Ridged-Waveguide-Cavity Gunn
Oscillator for Wide-Band Tuning,” IEEE Trans. Microwave Theory
Tech., vol. MTT-24, pp. 257-259, May 1976.

[6] S.Mizushina, N. Kuwabara, and H. Kondoh, “Theoretical Analysis
of a Ridged-Waveguide Mounting Structure,” IEEE Trans. Micro-
wave Theory Tech., vol. MTT-25, pp. 1131-1134, Dec. 1977,

{71 J. P. Montgomery, “On the Complete Eigenvalue Solution of Ridged
Waveguide,” IEEE Trans. Microwave Theory Tech., vol. MTT-19,
pp. 547555, June 1971.

Asymmetric Realizations for Dual-Mode
Bandpass Filters

RICHARD J. CAMERON anp JOHN DAVID RHODES, SENIOR MEMBER, IEEE

Abstract—Two analytic synthesis techniques are presented for even-
degree asymmetric dual-mode in-line prototype networks up to degree 14.
Commencing with the coupling matrix for the double cross-coupled array,
rotational transformations are applied to transform the matrix into the
form required for the dual-mode in-line asymmetric structure. “Asymmet-
ric” here means that the coupling elements (irises, screws) are unequal in
value about the physical center of the filter. The necessity for these
asymmetric solutions arose when it was discovered that it was impossible to
realize certain useful transmission characteristics with the symmetric in-line
structure, on account of their transmission zero pattern in the complex-
plane representation of the transfer function. Furthermore, because the
full coupling matrix is used instead of the even-mode matrix as with the
symmetric solution, the asymmetric in-line realization process may be
applied to electrically asymmetric matrices, such as those for single-ended
filters for mulitiplexer applications. To demonstrate the validity of the
theory, a practical model of each type of realization has been constructed
and measured.

I. INTRODUCTION

HE PROBLEM of converting the mathematical de-
scribing polynomials of the characteristics of a low-
pass prototype filter network into a symmetric in-line
dual-mode structure was first addressed by Atia and Wil-
liams [1]. Firstly an even-mode coupling matrix was
synthesized, and then by iteratively rotating this matrix
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certain prescribed couplings were annihilated. The result-
ing matrix, when unfolded into the full coupling matrix,
contains only those couplings that could be realized by a
symmetric in-line dual mode structure, while retaining the
original 2-port electrical parameters. More recently, the
procedure of annihilating the couplings by iteration and
optimization has been replaced by analytic techniques for
even filter orders 6—12 inclusive [2]. These analytic tech-
niques use as their base, the folded coupling matrix for the
generalized low-pass cross-coupled network, the synthesis
of which is described in [3]. Using these new procedures,
the full coupling matrices for symmetric in-line dual-mode
filters are easily and quickly generated from the describ-
ing polynomials. )

The symmetric realizations however have restrictions.
Firstly, the methods cannot be used for electrically asym-
metric characteristics, such as those for multiplexer appli-
cations. Secondly, there does not appear to be a solution
for 14th order characteristics, which occasionally do have
application. Thirdly, for lower degree cases, certain char-
acteristics which have particular patterns of transmission
zeros as represented in the Argand diagram are unrealiz-
able with a symmetric structure. A complete set of realiza-
bility conditions is given in [2].

It was these reasons that prompted a study to be made
into solutions other than- with symmetric structures. In
fact two general types of asymmetric solution were dis-
covered. The first is a general asymmetric solution which
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is valid for realization of any network transfer function,
including those characteristics which lie in the areas men-
tioned above and which cannot be realized with the
symmetric structure. The second type is known as the
cascade-quadruplet (CQ) in-line solution, which has dif-
ferent restrictions to the symmetric solution. The general
realizability condition in this case is that the transfer
function cannot have complex transmission zeros. For
both types of realization, a description of the analytic
methods leading to the in-line realization is presented, for
even orders 6—14 inclusive for the general solution, and
for even orders 6-10 inclusive for the CQ solution. A
laboratory model of each type has been constructed and
the measured performance of each is given.

II. GENERAL PRINCIPLES

As with the symmetric solution, both the solutions
described here use as their base the generalized low-pass
cross-coupled network (Fig. 1(a)). The synthesis procedure
for this network is given in [3]. The network is a folded
ladder network of admittance inverters K; and shunt
capacitors C;, cross coupled by further inverters K. Fig,
1(b) shows the corresponding coupling and routing dia-
gram for this network, where the capacitors are depicted
as nodes intercoupled by forward and cross couplings M, ;.
Fig. 1(c) gives the coupling matrix for the generalized
cross-coupled network together with the formulas used to
generate the elements of the matrix from the elements of
the network. The procedure is equivalent to scaling the
internal capacitors of the network to the normalized value
of unity.

Relating the diagram of Fig. 1(b) to the coupling matrix
of Fig. 1(c) it is clear that the main couplings are those
running parallel to the principle diagonal, i.e.,
M,,, M,;, M,,, etc. The weaker cross couplings are those
on the antidiagonal, M5, M,,, M, in this case. There are
three cross couplings in this example, but when converting
this folded configuration coupling matrix to that for an
in-line configuration, one must be mindful of the fact that
the folded configuration realizes the maximum number of
couplings for a given order, and therefore the maximum
number of finite location transmission zeros. The in-line
configuration is able to realize less finite zeros, according
to the rule

maximum number of
realizable finite
zeros with in-line
realization

m=N/2
m=(N/2-1)

(n even)

(n odd) o)

where n=N/2 and N is the order of the filter. Before
committing a transfer function to the in-line realization
process it should always be tested to ensure that the
number of finite zeros required to realize it does not
exceed m. A N XN rotation matrix R is defined as in Fig.
2. Pivot [i, j] means that R;; =R, =cosf,, and R, ==
—R;,=sinb, (i, j#1 or N). If a coupling matrix M is
premultiplied by R and the result postmultiplied by RT
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Fig. 1. (a) Generalized low-pass cross-coupled network. (b) Coupling
and routing schematic (8th order example). (¢) Coupling matrix for
low-pass prototype (8th order example).
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Fig. 2. 8X8 rotation matrix example, pivot (2,6), angle §,.

(the transpose of R) a new matrix will result which has the
same eigenvalues and eigenvectors as the original M

M,=R,.'M_1'R’,l.- (r=132y33'.')' (2)

An infinite number of networks therefore exist which, if
all the couplings within the resultant coupling matrix are
realized, will produce the same transfer function as the
original.

The essence of the general in-line realization method to
be described below is to apply a series of rotations accord-
ing to (2), where the angle of rotation 8, of the rth rotation
is derived from elements of the coupling matrix resultant
from the (r— 1)th rotation. The first rotation is applied to
the generalized cross-coupled array matrix M, (Fig. 1(c)
and after the final rotation the goal is to achieve the
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Fig. 3. (a) In-line dual-mode structure, 8th order example. (b) In-line
structure coupling matrix. (c) Coupling and signal routing schematic.

coupling matrix which may be realized by an asymmetric
in-line dual mode structure (Fig. 3).

III. GENERAL ASYMMETRIC SOLUTION

Unfortunately there does not seem to be any pattern
governing the pivotal positions or angle of rotation for
different orders of filter. Each (even) order has to be
considered individually. For N =4 the cross coupled array
matrix and dual mode in line prototype are of the same
structural form and further transformation is not neces-
sary. N=6 is the first nontrivial case, and solutions for
N=6, 8, 10, 12, and 14 have been derived. Table I gives a
summary of the pivotal positions and angles 6, of the series
of rotations that have to be applied in order according to
(2). It should be noted that when calculating the angle of
rotation 6, for the rth rotation, the elements M,, ,, and
M,, ., are taken from the coupling matrix resultant from
the previous rotation, and that the rotation is then applied
to this resultant matrix.

There are no conditions on the pattern of the zeros of
the transfer functions for an in-line solution using this
method, provided the total number of finite-location zéros
z<m as previously described.

If the rotations of Table I are successively applied to
the cross-coupled array matrix, a coupling matrix will
emerge that is realizable in an in-line dual mode structure
with asymmetric-valued coupling elements. A point of
interest here is that for n odd, one of the internal irises
next to the input or output coupling iris will be a slot,
unlike the rest which will be cruciform. A -14th order
linear phase filter has been designed and constructed
using these techniques, and a description and measured
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TABLE 1
PIvOTAL POSITIONS AND ROTATION ANGLES FOR GENERAL
ASYMMETRIC IN-LINE REALIZATIONS, ORDERS 6 (2) 14

Order | Rotation Number Pivot O,=tan"'(k M, ,/M, ;)
N r fi.n] ul u2 vl v!
6 1 [2.4] 2 5 4 5 +1
1 [4.6 3 6 3 4 | -1
" 2 [2.4 2 7 4 7| +t
3 3.5 2 5 2 3] -1
4 5.7) 4 7 4 54 -1
1 4,6 4 7 6 7 +1
10 2 6.8 3 8 3 6 -1
3 7.9 9 7 -1
1 [5.9] 4 9 4 51 -1
2 [3.5 3 10 5 10 +1
3 [2.4 2 5 4 5| +1
12 4 6.8 3 8 3 6 -1
5 7,9] 6 9 6 7] -1
6 [8.10] 5 10 5 8 -1
7 {9,111 8 | 11 8 9 | -t
1 [6.10] 5 10 5 6 | -1
2 [4.6] 4 | n 6 | 11 | +1
3 [7.9] 4 9 4 7 —1
4 [8.10] 7 10 7 8 | -1
14 5 [9.11] 6 11 6 9 -1
6 [10,12] 9 | 12 9 10 | —1
7 [5.7] 4 7 4 5] -1
8 [7.9] 6 9 6 7| -1
9 [9.11] 3 11 8 9 | -1
10 [11.13] 10 | 13 10| 1| -1
N\ AR\ /e
— S o B e R N
\ \ \
@
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Fig. 4. (a) 10th order example of a CQ dual-mode structure. ®)
Coupling matrix for 10th order CQ example. (c) Coupling and routing
diagram, v

curves of its performance will be found towards the end of
this paper. »

IV. CAsSCADE QUADRUPLET REALIZATION

A CQ construction is similar to the general asymmetric
structure described above, but the internal irises are alter-
nately cruciform and slot along the length of the filter
(Fig. 4(a)). From the coupling and routing diagram of Fig.
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Fig. 5. Appearance of the coupling matrix during the first three rota-
tions. X Nonzero coupling matrix entry. ® Coupling matrix entries
that have been created as a consequence of a rotation. © Coupling
matrix entries that have been annihilated as a consequence of a
rotation.

TABLE II
ROTATIONS FOR THE 8TH ORDER CQ SOLUTION

Rotation number Pivot O,=tan"'(k M, /M, )
r [+.]] ul u2 vl v2

[3.5] +1

BN -
—

e

-

]

N

-
B aw
[

|

4(c) it may be seen that the nodes are arranged in
quadruplets, each with one cross coupling, and connected
in cascade with each other through one main-line cou-
pling. For n odd an extra pair of nodes is attached at the
end. Each quartet may be identified with the production
of a transmission zero pair. If the cross coupling is nega-
tive an imaginary axis pair will be created, there produc-
ing an attenuation pole pair, and if it is positive a real-axis
pole pair will result with group delay self-equalization.
The value ot this CQ structure is not so much that it
saves on coupling irises, but that it is able to realize those

characteristics that violate the conditions of realization for
the symmetric structure, on account of their transmission
zero pattern. It has provided an elegant solution to the
very useful 8th order characteristic which has one real axis
and one imaginary axis transmission zero pair, which
violates the conditions of realizability for the symmetric
structure.

The base is again the coupling matrix for the gener-
alized cross-coupled network, Fig. 1(c). The solution for
the 6th order case is the same as that for the general
in-line solution. That this is so becomes clear when the
coupling and routing diagram is drawn for the 6th order
case and remembering that for » odd the general in-line
solution produces one zero-value internal cross coupling.
The first order that will be considered for the CQ solution
will therefore be the 8th.

A. 8th Order CQ Solution

Rotations are applied to coupling matrices in exactly
the same manner as described for the general asymmetric
solution. The difference here is that the first rotation is by
an unknown angle #,. Two further rotations are then
made in accordance with Table IL

Fig. 5 shows the nonzero entries in the coupling matrix
after each of the first three rotations. Each entry is indi-
cated with a cross for convenience, but the actual value of
cach element will probably change after each rotation.
Adopting the notations ¢, =tan#,, c;=cos#b;, etc., and
M/, =matrix element after first rotation, M;; after third
rotation, etc., the following equation sets appear (matrix
elements after a rotation expressed in terms of thos
before the rotation): :

1) After First Rotation:

[

Mi,=M,
[

M, =c,M,,
4 - —_—

My =c My, —s M,
(-

Mis=s My, +c, M,y
[

Mg =s5,Mys+c Mg

Mg =M ®)
Mg =M
My =ci My —s, Msg
M5 =5,M,,
M =My,.
2) After Second Rotation:
My, =M,
My, =M,

" o ’ ’
My, =c, M, —85, M3,
” o_ r ’
Mg =c, M, 8y Mse
” — 4 4
Mg =5, Mys +c, Mg

Meg; =c, Mg, 4
Mg =M
M35 =Mj;
My =My,

"o _ 7
Mg =—s,M

Mg =5, M3, +c, M3, =0 because t, = — M}, / M;,.
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3) After Third Rotation:
=M,
23, =My
My =M,
M3 =y Ml —s, M,
G =3 Mis —5, M5y
Mg =5, Mg+ Mgy

" ”
78 =C3 Mg

%)

"o _ ”

5§ = —S3 M3

" __ " __ ”

19 _ ” ”

2 =83 M5 +e3 My,

" _ ” ”
41 =83 Mys +c3 My,

7

To force My, and M}, in (5) simultaneously to zero, ¢, is
set equal to — M}, /M. Then

M5 My = MM,
and substituting from (4)
M;s - fi
o Mis—s, Mg —s5,Mg;

or
i (4
M;s _ 7
’ (4 (4 ’ 14 (4 hd
M Mys + My Mg 36 M6z

()

Substituting for M, in (6) using (3) yields, after a good
deal of algebraic manipulation, a quadratic equation for ¢
in terms of the elements of M, the original cross-coupled
network matrix.

One further rotation is necessary, defined in Table II, in
order to annihilate Mys (Fig. 5(c)), after which the CQ
matrix of Fig. 6(a) appears. Fig. 6(b) gives the routing and
coupling diagram for the 8th order CQ structure, and the
explicit formulas (7) give the four rotation angles and the
elements of the final CQ coupling matrix, all in terms of
the coupling elements of the original cross-coupled net-
work matrix M,

L4
MY =c,My, My =cic[ My — c_z(M“ — 1, M,s)]

1
MY =csMyy MY =cie [ty My + ?'(MZM — 1, Mys5)]
2

-M
Vo 27
MllX=S4M12 M415 R
354
1
Mg = —s5; My M}6V=czc3[c—(M56 +1,My5)— 13 Mg]
1

t
M6I7v=6263[c_3(M56 +t2M45)+M67] (7)
1

where ¢, is the solution of the quadratic equation
17(My; Mys My — Mg Mgy Moy + Mg Msg Mi;)
+ 14 My Mgy Miys — Moy ( Mg — Mig — Mg + M3))
— My (MsgMyg + My Mys) =0
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1
1 MY MY,
2 M3 M3
3 M3, M3,
4 MY M3, M
5 M3, My Mg
6 M Mg
7 Mg, M5
8 MY M3
(a)
2 MY 3 6 MY 7
MY M3 Mg M3
Mol MY 4 MY s MY __ 8l My,
(b)
Fig. 6. (a) 8th order CQ coupling matrix. (b) 8th order CQ routing and
coupling diagram.
TABLE III
10TH ORDER PRELIMINARY ROTATIONS
Rotation no Pivot O, =tan ' {+ M, /M, ) .
r [+.]] ul u2 vl v2
1 2.7 3 8 7 8
2 [4,6] 4 7 6 7

-M,,

_ My
s =2
S My,

5, Mg,

b= — Mg — 1, Msg
g My, — 1, Mys

It is the quadratic equation for tan#, in (7) that sets the
realizability conditions for this CQ in-line realization. As
was mentioned previously these conditions appear to be
different from those for the symmetric in-line structure,
and it became possible to construct a laboratory model
using the CQ procedure possessing both a real-axis and an
imaginary axis zero-pair. The measured performance
curves of this filter are given below.

B. 10th Order CQ Solution

Fortunately the solution for the 10th order CQ structure
uses the same formulas as the 8th order, and a rederiva-
tion is not necessary. It is necessary however to first shift
the elements of the antidiagonal towards the upper left
corner by one (Fig. 7). This is achieved by two pre-
liminary rotations, defined in Table III. Now the formulas
(7) may be applied to the upper left 8 X8 submatrix, after
which a CQ coupling matrix for the 10th order will appear
(see Fig. 4).

V. PRrAcTICAL MODELS

A. 14th Order Linear Phase Filter

The European Communication Satellite (ECS) repeater
is a double conversion type, the receiver is at 14 GHz, the
IF at about 1 GHz and the power amplifier is at about
11.5 GHz. Demultiplexion of the 6 QPSK 60-MBd uplink
channels is achieved at IF by 14th order linear phase
filters of interdigital construction. Modern FET technol-
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Fig. 7. (a) Nonzero coupling elements for 10th order generalized cross-
coupled array. (b) Nonzero coupling elements after the two pre-
liminary rotations.

Fig. 8. 14th order linear phase filter general asymmetric in-line realiza-

tion.
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TABLE IV
14TH ORDER LINEAR PHASE Low-PAss PROTOTYPE VALUES

. Cross-coupled network prototype General asymmetric realisation
element values prototype coupling values
C, = Cyy = 09239 K| 4a=00 M, = 08581 My = 04064 M,, =00
C, =C,,=14698 K, ,=00 M,, = 05961 M,,, = 04408 M,  =0.1090
Cy =C,,=19147 Ky ,,=00 M,, = 05384 M,,,, =-07332" M, =0104]
ICy = Cyy = 17309 K, = 00397 Mg = 04306 M, ,, = 03029 M.,, =01309
ICs = Cyo = 2.0305 K o= 02257 Mg, = 04883 M,,, = 02460 M,,, =01850
ICe. = Cy = 1.8850 Kyo = 03922 Mg, =—06315 M,,, = 06699 M, ,, = 05363
C, = Cy =3.2919 K,q = 06111 M,, = 04769
AlL K inverters = 1.0 except K,
TABLE V

8TH ORDER SELF-EQUALIZED PSEUDOELLIPTIC LOow-PAss
PROTOTYPE VALUES

CQ realised coupling elements

Cross coupled network elements
C, =C, =08248 K, = 00
C, =C, =14310 K, =-00854
C; =C, = 1.8302 Ky, =-—00833
Co =Cs =17643 K5 = 11344
Kiz = Ky = Ky = K = Koy = Koy = 1.0

= 0.8904
= 04728
= 0.5782
= 0.5648

0.4621
0.8437]
0.8368]
0.2335]
—0.3835]

My,
MZ.‘
MJA
M45

M,
M,
Mo,
M,
Mg,

[ ]

ogy has made practical the concept of a single conversion
repeater with the IF at the downlink frequency of 11.5
GHz and consequent savings in complexity and weight.
Thus the demultiplexion function has to be performed at
11.5 GHz instead of 1 GHz and the 1nterd1g1ta1 technol-
ogy becomes unsuitable.

To investigate the performance of the single conversion
repeater system, a laboratory model has been built and for
that a 14th order linear phase dual mode filter constructed
using the general asymmetric in-line procedure described
above. The prototype is an equiripple amplitude type with
group delay equalization over about 75 percent of the
design bandwidth of 77 MHz. This is achieved with 6
finite transmission zeros (the maximum permissible, from
(1)), arranged in a complex quartet and a real-axis pair.
Center frequency is 11 575 MHz, channel 5. The proto-
type generalized low-pass cross-coupled network element
values (see Fig. 1) and prototype asymmetric in-line real-
ized coupling values for this filter are given in Table IV.

Having synthesized the generalized cross-coupled array
and then applying the rotations given for the 14th order in
Table I, the dual mode filter shown in Fig. 8 was manu-
factured. The performance is shown in Fig. 9 (amplitude),
Fig. 10 (group delay), and Fig. 11 (wide-band sweep to
search for spurious responses, particularly in the receive
band 14-14.5 GHz). Band center loss is about 3.5 dB
corresponding to a Q, of about 4500, which is somewhat
low, but should improve with cavity polishing and plating.
Comparing the responses with those for the 1-GHz flight
models, the performance seems to be everywhere equiva-
lent except for a slight “rounding of the shoulders” near
cutoff, which should be rectified by improving the un-
loaded @ of the cavities.

B. 8th Order Cascade Quadruplet Filter

Future satellite communication systems are likely to
move away from crowded L-, C-, and X-band frequencies
to the more spacious 20-30-GHz regions as technology

Fig. 12. 8th order self-equalized pseuddélliptic filter, CQ realization.

progresses. A breadboard laboratory model has been as-
sembled at ESTEC designed for an uplink frequency of
about 30 GHz, a downlink of about 20 GHz, an IF of
11.550 GHz and to carry a single QPSK channel at 30, 60,
or 90 MBd [4]. To investigate the degradation introduced |
by this channel as if it were in a multichannel environ-
ment, an 8th order CQ dual mode input multiplexer filter
was manufactured using the CQ realization procedures
described above, to contiguous PSK channel specifica-
tions. The prototype is an equiripple amplitude type with
a single imaginary-axis transmission-zero pair to provide
an attenuation pole pair, and: a real-axis zero pair for
group delay equalization over about 60 percent of the
filter’s 120-MHz bandwidth. Center frequency is 11 550
MHz.

The initial generalized low-pass cross-coupled network
element values (see Fig. 1) and the final CQ realized
coupling values for this filter are given in Table V. The

laboratory model is shown in Fig. 12 and the performance
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Fig. 13. Attenuation characteristic.
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Fig. 14. Group delay response.

is given in Fig. 13 (amplitude), Fig. 14 (group delay), and
Fig. 15 (wide-band sweep to search for spurious re-
sponses). The BER of the system was measured where it
was found that the filter was contributing about 0.2 dB of
degradation to the total (see also [5] for a description of a
40-MHz bandwidth version of this filter).

V1. CONCLUSIONS

Presented in this paper are two methods for realizing
prototype filter characteristics in asymmetric dual mode
in-line structures. Together with the symmetric-structure
procedure outlined in [2] they provide a comprehensive
solution in the area of microwave filter realization. The
two procedures are both easily programmed onto a digital
computer, and exact answers are produced at the expense
of negligible amounts of computer time. Using such pro-
grams two dual mode bandpass filters have been con-

0 REJECTION (dB)

50 s L L i
10 n 12 13 %

s
15GH2

WIDEBAND SWEEP
Fig. 15. Wide-band sweep 10-15 GHz.

structed, one in the general asymmetric in-line structure
and the other in the CQ structure. Their performance
curves have been presented to demonstrate their practical-

1ty.
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